We Devoted Ourselves To The Development Of Biomedical Research Reagent.
Product Details
Metformin HCl,1115-70-4,IC-0220370
Metformin HCl is one of the most effective and widely used therapeutics for treatment of type 2 diabetes. It selectively lowers the hepatic gluconeogenesis without rising insulin production, causing weight gain or hypoglycemia. [1] AMPK (5'AMP-activated protein kinase) acts as a metabolic master switch regulating several intracellular systems including the cellular uptake of glucose, the β-oxidation of fatty acids and the biogenesis of GLUT4 (glucose transporter 4) and mitochondria. In hepatocytes, AMPK was activated by metformin, followed by decreased ACC (acetyl-CoA carboxylase) activity, induction of fatty acid oxidization and suppression of lipogenic enzyme expression.[2] Metformin also inhibited mGPD (mitochondrial lycerophosphate dehydrogenase),a redox shuttle enzyme, leading to an altered hepatocellular redox state, decreased conversion of lactate and reduced hepatic gluconeogenesis. [1] In rats treated with metformin, hepatic expression of SEREP-1 mRNAs/protein and activity of ACC were reduced. [2] In metformin treated mice, LKB1 in liver was essential for the ability of metformin to reduce blood glucose [3]. In ASO (Antisense oligonucleotide) knockdown of hepatic mGOD in rats, the phenotype was similar to chronic metformin treatment. It abolished mefromin-induced cytosolic redox state, reduction in plasma glucose concentration and EGP inhibition. [1]
Metformin HCl is one of the most effective and widely used therapeutics for treatment of type 2 diabetes. It selectively lowers the hepatic gluconeogenesis without rising insulin production, causing weight gain or hypoglycemia. [1] AMPK (5'AMP-activated protein kinase) acts as a metabolic master switch regulating several intracellular systems including the cellular uptake of glucose, the β-oxidation of fatty acids and the biogenesis of GLUT4 (glucose transporter 4) and mitochondria. In hepatocytes, AMPK was activated by metformin, followed by decreased ACC (acetyl-CoA carboxylase) activity, induction of fatty acid oxidization and suppression of lipogenic enzyme expression.[2] Metformin also inhibited mGPD (mitochondrial lycerophosphate dehydrogenase),a redox shuttle enzyme, leading to an altered hepatocellular redox state, decreased conversion of lactate and reduced hepatic gluconeogenesis. [1] In rats treated with metformin, hepatic expression of SEREP-1 mRNAs/protein and activity of ACC were reduced. [2] In metformin treated mice, LKB1 in liver was essential for the ability of metformin to reduce blood glucose [3]. In ASO (Antisense oligonucleotide) knockdown of hepatic mGOD in rats, the phenotype was similar to chronic metformin treatment. It abolished mefromin-induced cytosolic redox state, reduction in plasma glucose concentration and EGP inhibition. [1]